ADS

C Program To Find Union Of Two Sets | C Programming

The collection of well-defined distinct objects is known as a set. The word well-defined refers to a specific property which makes it easy to identify whether the given object belongs to the set or not. The word ‘distinct’ means that the objects of a set must be all different. 


Union Of Sets:-

Union of two given sets is the smallest set which contains all the elements of both the sets.
To find the union of two given sets A and B is a set which consists of all the elements of A and all the elements of B such that no element is repeated.
The symbol for denoting union of sets is ‘’. 
For example;
Let set A = {2, 4, 5, 6}
and set B = {4, 6, 7, 8}
Taking every element of both the sets A and B, without repeating any element, we get a new set = {2, 4, 5, 6, 7, 8}
This new set contains all the elements of set A and all the elements of set B with no repetition of elements and is named as union of set A and B.


Source Code

#include<stdio.h>
#include<conio.h> 
int main() 
 int a[10],b[10],m,n,i,j; 
int c[20],k=0,flag=0; 
 int ch; 
 printf("Enter the number of elements in first set:\n"); 
 scanf("%d",&m); 
 printf("Enter the elements:\n"); 
 for(i=0;i<m;i++) 
 { 
  scanf("%d",&a[i]); 
 } 
 printf("\nElement of First set:\n"); 
 for(i=0;i<m;i++) 
 { 
  printf("%d\t",a[i]); 
 } 
 printf("\nEnter the number of elements in second set:\n"); 
 scanf("%d",&n); 
 printf("Enter the elements:\n"); 
 for(i=0;i<n;i++) 
 { 
  scanf("%d",&b[i]); 
 } 
printf("\nElement of Second set:\n"); 
 for(i=0;i<n;i++) 
 { 
  printf("%d\t",b[i]);
}
 for(i=0;i<m;i++) 
 { 
  c[k]=a[i]; 
  k++; 
 } 
 for(i=0;i<n;i++) 
 { 
  flag=0; 
  for(j=0;j<m;j++) 
  { 
   if(b[i]==c[j]) 
   { 
    flag=1; 
    break; 
   } 
  } 
  if(flag==0) 
  { 
   c[k]=b[i]; 
   k++; 
  } 
 } 
 printf("\nElement of resultant set\n"); 
 for(i=0;i<k;i++) 
 { 
  printf("%d\t",c[i]); 
 } 

OUTPUT

Enter the number of elements in first set:
5
Enter the elements:
1
2
3
4
5
Element of First set:
1       2       3       4       5
Enter the number of elements in second set:
5
Enter the elements:
6
7
8
5
4
Element of Second set:
6       7       8       5       4
Element of resultant set
1       2       3       4       5       6       7       8

Post a Comment

0 Comments